NWO - Nederlandse Organisatie voor Wetenschappelijk Onderzoek - print-logo

URL of this page :
https://archief.nwo-i.nl/en/news/2013/03/18/effect-of-image-charges-on-electron-transport-better-understood/

Printed on :
March 26th 2025
08:25:55

Molecular electronics
Molecules are very small and typically just several nanometres in size. A single molecule between two electrodes could be used as a highly sensitive sensor or extremely small transistor. However the problem in developing these 'molecular electronics' is that it is difficult to make electrical contact with a single molecule. This research has resulted in a better understanding of the fundamental physical behaviour of single molecules. This has led to ideas for using image-charges to realise electronic molecular components.

Alignment of energy levels
Image-charges occur in a metal due to the proximity of charge, such as that on the single molecule. The image-charges in the metal in turn influence the energy levels of the molecule. It was already know that this is how image-charges play an important role in charge transport through molecules. The image-charges can strongly shift the alignment of the molecular energy levels compared to the energy levels in the metal. That is how they cause an enhanced or diminished conduction. Now for the first time the researchers have systematically described this effect for a single molecule.

Combination of expertise makes measurement possible
By combining their unique areas of expertise, researchers from Delft and Leiden jointly developed a new technique to measure the molecular conduction. The method is based on the 'mechanically guided break junction' technique, invented by Van Ruitenbeek. In Delft, the technique has been expanded by incorporating it into a transistor. This technique makes it possible to vary the distance between the electrodes and therefore the proximity of the molecule, so that the image-charge can be influenced. As a result of this the researchers acquired a unique mechanical and electrical control over the energy levels of the molecule. That allowed them to experimentally determine and quantify the role of the image-charges.

Further information
Herre S. J. van der Zant, +31 (0)15 278 77 33
Jan van Ruitenbeek, +31 (0) 71 527 54 50

Reference
Mickael L. Perrin, Christopher J. O. Verzijl, Christian A. Martin, Ahson J. Shaikh, Rienk Eelkema, Jan H. van Esch, Jan M. van Ruitenbeek, Joseph M. Thijssen, Herre S. J. van der Zant and Diana Dulić, Large tunable image-charge effects in single-molecule junctions, Nature Nanotechnology (2013). 

Confidental Infomation